
Siphoning
Android
Notifications

Agenda

● Android Notifications 101

● Deep dive

● Implications

● Notification Pirate v1

● Pirate v2

● References

Abhishek J M

● Security @ CRED

● Trainer, 7ASecurity

● Project lead: Adhrit & EVABS

● Presentations: 2 arsenal tools - BlackHat US, Asia & Eu, Nullcon, OWASP Seasides (2020 -
present)

● Trainings: OWASP AppSec NZ, ThreatCon, 44Con, c0c0n etc

● Call of Duty Mobile (Legendary league this season!)

● @HawkSpawn

Android Notifications 101

Android Notifications

● Found in the Notification Bar

● Managed by Notification Access API

● Can contain Actions and RemoteInputs

Notification Access

● Not part of the usual permissions

● Found within the special app
permissions

● Useful for apps like launchers

#> working

● App creates a push notification and sends it
to the OS

● OS posts the notification onto the
Notification Bar

● User clicks on the notification and OS
redirects to the app

How does a ‘reply’ work?

● A Pending Intent
○ Intent

■ A message that is ‘intent’ional and has a target (eg: an app like WhatsApp)

■ Backbone of IPC

■ Can start an app, send/receive data within an app or even the OS

○ Pending Intent

■ Intent but is waiting on an action/reply (eg: Alarm to turn off bluetooth in 5 mins)

■ Can only control its input but not the target

■ Can be used by other apps to interact with your app.

Deep dive

#1 Intent vs Pending Intent

● Intent to your app → executes with
the permissions of the executing app

● Instantly executed

● Normally used for:
○ Within app message passing
○ OS to app and vice versa
○ App to app

● Pending Intent to your app executes
with the permissions of your app!

● Why?
○ Scenario: turning on bluetooth needs

BT permission.

○ If the calling app doesn’t have that
permission, it cannot do the task

● Takes inputs → sanitization is on the
the dev, not the OS

● Has flags to replace data within
Intent EXTRAS
(FLAG_ACTIVITY_NEW_TASK)

#2 Access Control?

● NotificationListener API

○ READ notifications in the Notifications Bar

○ ACCESS RemoteInputs and Actions

○ Regulated by a Dangerous permission (Notification Access)

○ A service that runs in the background even when the app is killed!

● Pitfalls

○ Once given access, FULL access to Notification Bar

○ Since notifications with RemoteInputs are PendingIntents → target fixed, extras can be replaced

○ No controls over who can access a given notification or its constituents

NotificationPirate

Accessing RemoteInputs

Two ways

● Notification Actions
○ Directly access all the Notification Actions from a notification
○ Identify if RemoteInputs are available and access if available

● WearExtender API
○ API for interacting with WearOS
○ Ideally used for sending/receiving notifications to/from Wear devices (eg:

Smartwatches)
○ Pretend to use WearExtender for Wear devices → No controls to verify!

#1 Notification Actions

#2 WearExtender API

V1

#> V1

● Get Notification Access

● Start the NotificationListener service

● Capture every notification

● Happily siphon into a DB

<0> Implications

● Can run in the background even when V1 has been killed

● Hard to identify, since no UI interactions are required

● Without a killswitch → only option: uninstall + reboot the device!

● From DB → remote server? Easy!

● Possible to differentiate the notifications and the corresponding messages by
identifying the package name and grouping

V2

#> V2

● Get Notification Access (can do both via direct Actions as well as WearExtender)

● Start the NotificationListener service

● Read every notification and access Actions and RemoteInputs

● Send FLAG_ACTIVITY_NEW_TASK and update the reply (RemoteInput) with tailored data
(text, links etc)

● Send the Pending Intent

● Cancel the notification from the Notification Bar

#> Implications

● Can do everything V1 does!

● Can automatically identify if a notification has
○ a) RemoteInputs
○ b) the key required to uniquely identify & trigger the PendingIntent

● Hides from the App’s menu on device <= Android 8 → only option: Identify from Settings
> Apps → uninstall + reboot the device!

● Cancel the notification even before it lands on the Notification Bar! → Because the service
can access it before it can land on the UI!

● Bombard with multiple replies because Android supports ~ replies from the Notification
Bar == ~ PendingIntents!

In the Wild

Probable Fixes

● Verifying every app's access to a given notification so that any app cannot read
another app's notification

● Restricting the possible number of RemoteInputs with a certain limit so that a race
condition cannot be created by bombarding with alarming number of replies.

References

● RemoteInputs

● WearableExtender

● Malware poses as Netflix to read WhatsApp messages

● New Android malware spreads via malicious auto-replies to
WhatsApp messages

https://developer.android.com/reference/android/app/RemoteInput
https://developer.android.com/reference/android/app/Notification.WearableExtender
https://www.zdnet.com/article/new-android-malware-poses-as-netflix-to-hijack-whatsapp-sessions/
https://blog.checkpoint.com/security/autoreply-attack-new-android-malware-found-in-google-play-store-spreads-via-malicious-auto-replies-to-whatsapp-messages/
https://blog.checkpoint.com/security/autoreply-attack-new-android-malware-found-in-google-play-store-spreads-via-malicious-auto-replies-to-whatsapp-messages/

